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Villeurbanne Ćedex, France
‡ Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz,
Germany

Received 2 October 1998

Abstract. We discuss numerically the relaxation dynamics of a simple structural glass which
has been quenched below its (computer) glass transition temperature. We demonstrate that time
correlation functions show strong aging effects and compute the fluctuation dissipation ratio of this
non-equilibrium system.

1. Introduction

Whenever a system whose relaxation time is large is driven out of equilibrium, it can be expected
that its dynamics will show aging effects. This means that observables that in equilibrium are
constant become time dependent, and time correlation functions that in equilibrium depend
only on time differences will now depend ontwo times. Typical examples for such situations
are ferromagnetic coarsening, and the relaxation dynamics of spin and structural glasses [1].
The investigation of such aging phenomena is by no means a new subject [3], but due to new
theoretical approaches [1], and to the development of accurate experiments in the field of spin
glasses [2], this field has recently become a very active area of research.

For the case of structural glasses, not much is known about the aging dynamicson a
microscopic level, since the experiments needed to address these questions are unfortunately
quite difficult. This is in contrast to computer simulations, since these readily allow one to
study the system on a microscopic level and thus give access to all observables of interest. The
price of this advantage is that only relatively small timescales and systems can be studied, but
it has turned out that these disadvantages are not too serious. In such simulations one usually
mimics the experimental set-up, in that the system is prepared in an equilibrium state and is
at time zero driven out of equilibrium, e.g. by decreasing the temperature or by applying an
external field. Subsequently the system is allowed to relax for a certain waiting timetw and
then one starts to measure its properties, such as the density and the magnetization or a time
correlation function. This approach is also the one that we will use in the present work in an
attempt of gain a better understanding of the dynamics of structural glasses at low temperatures.

2. The model and details of the simulation

For the investigation of aging effects it is useful to be able to change the waiting time over
as many decades as possible and, for a given waiting time, to study the subsequent relaxation
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dynamics over a long time. Therefore it is advisable to study aging phenomena for models
that are simple enough that they can be simulated over a large time window and are still
reasonably realistic, to catch the essential features of structural glasses. One such model is
a binary Lennard-Jones mixture whose dynamical properties in its strongly supercooled state
have been investigated in great detail [4]. In these studies it has been shown that the dynamics
of this system can be quite described well by means of mode-coupling theory [5], with a critical
mode-coupling temperatureTc around 0.435 (in reduced energy units). The computer glass
transition takes place (depending of course on the cooling rate) in the vicinity ofT = 0.46.

The particles in this 80:20 mixture interact via a Lennard-Jones potential of the form
Vαβ(r) = 4εαβ [(σαβ/r)12 − (σαβ/r)6] whereα andβ denote the types of particle (which
we call ‘A’ and ‘B’). In the following we will useσAA andεAA as the units of length and
energy, and(mσ 2

AA/48εAA)1/2 as the unit of time, wherem is the mass of the particles, which
is independent of the species. The parameters of the potential areεAA = 1.0, σAA = 1.0,
εAB = 1.5, σAB = 0.8, εBB = 0.5, andσBB = 0.88. The total number of particles was
1000, and in order to minimize finite-size effects we used a cubic box of size 9.4 and periodic
boundary conditions. The equations of motion have been integrated using the velocity form
of the Verlet algorithm with a step size of 0.02.

3. Aging of a ‘zero-field-cooled’ system

In order to have aging phenomena a non-equilibrium situation has to be generated; this was
done as follows. Starting from an equilibrium configuration at a high temperature (Ti = 5.0)
we quenched the system at timet = 0 to a final temperatureTf . This was done by coupling the
system periodically (every 50 time steps) to a heat bath. The system was allowed to evolve at
the temperatureTf < Tc for the waiting timetw and subsequently we started the measurement
of the time correlation functions. In order to improve the statistics of the result, this procedure
was repeated 6–10 times for different initial conditions.

As shown previously in reference [6], quantities that,in equilibrium, do not depend on
time, such as the total energy of the system, are not very sensitive to the aging process.
Much more pronounced non-equilibrium effects are observed for time-dependent quantities,
such as the intermediate-scattering function [6, 7] or the mean squared displacement [8]. In
the following we will therefore study the dependence on time andtw of Ck(tw + τ, tw), the
generalization of the self-intermediate-scattering function to non-equilibrium situations. This
observable is defined by

Ck(tw + τ, tw) = 1

N

∑
j

exp
[
ik · (rj (tw + τ)− rj (tw))

]
(1)

wherek is the wavevector andrj (t) is the position of particlej at timet . In figure 1 we show
the time dependence ofCk(tw + τ, tw) for different waiting times (see the figure caption). The
value ofk is 7.25, the location of the maximum in the structure factor, andTf = 0.4, i.e. is only
10% belowTc. The main figure showsCk in a log–linear representation. We see that at short
times the curves do not depend ontw, i.e. no aging effects are observed [9]. For longer times
we find, however, very pronounced aging effects in that the curve with waiting timetw starts
to leave the common curve observed at short times and decays towards zero. In reference [6]
it was shown that the time at which this pealing off from the envelope curve occurs is of the
order oftw.

In the inset we show the same data on a log–log plot. From this figure it is evident that
at long times the relaxation ofCk is described well by a power law with an exponent that is
independent oftw and is around 0.4. Qualitatively similar results are found for other values of
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Figure 1. The time dependence ofCk(tw + τ, tw) for different waiting times (tw = 10, 40,
1000, 10 000, 39 810).Tf = 0.4. Inset: the same correlation functions in a double-logarithmic
representation.

k. For short times we have found that the approach to the plateau is described well by a power
law,Ck(tw +τ, tw) ∝ τ−a, with an exponent around 0.45, a time dependence that is compatible
with the prediction of mean-field theories of aging [1].

The results presented so far have been for the final temperatureTf = 0.4, i.e. a
temperature that is only about 10% below the critical mode-coupling temperature of the system
(Tc = 0.435). Similar behaviour was observed forTf = 0.3. ForTf = 0.1, however, the
relaxation behaviour is qualitatively different. The main difference occurs for long waiting
times in the time regime in which the correlation functions decay below the plateau. Here the
correlators forTf = 0.1 seem to show an additional plateau, a feature which is not present in
the correlators forTf = 0.4. A closer inspection of the curves for theindividualsamples (for
Tf = 0.1 we have nine different samples) revealed that the reason for this second plateau is
given by a quite dramatic (0.1–0.2) and fast decay of the correlation function shortly before
the plateau is reached. The time at which this decay occurs depends on the sample but is
usually of the order of 103–104 time units. An analysis of the motion of the particles in
the time range in which this sudden drop occurs shows that the decay is related to a very
collective movement in which of the order of 10% of the particles move by about 0.1–0.5 units
of length in one direction. This observation can be rationalized as follows. After the quench
the configuration of the particles is very unfavourable and thus the system relaxes very quickly.
If the system is given a bit more time, i.e. for larger waiting times, it has enough time to relax
to a state which is no longer that unfavourable (for the givenTf ) and hence does not relax that
quickly. For intermediate and largetw it will hence explore for short timesτ only than part
of the configuration space which corresponds to the motion of the particles within their cages.
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However, the system will locally still have quite large stress fields and, given enough time, will
yield to these stresses and hence show a rupture-like motion which is the reason for the fast
drop inCk. Since this type of motion is so abrupt, it is unlikely that a mean-field like theory will
be able to give a correct description of it, except perhaps in a phenomenological way. (We note
that this situation is reminiscent of that of the mode-coupling theory of supercooled liquids,
since also in that case the so-called ‘hopping processes’ strongly affect at low temperatures
the very continuous, flow-like motion of the particles [5].)

4. The fluctuation dissipation ratio

A very interesting result of the theories of aging is related to the way in which the usual
fluctuation dissipation theorem (FDT), which holds for non-equilibrium systems, is violated.
In equilibrium, the autocorrelation functionCA(t) of an observableA is related to the response
RA(t) of A to its conjugate field by the FDT, i.e.RA(t) = −(1/kBT ) ∂C(t)/∂t . For the
non-equilibrium situation this relation is no longer valid, but it can be generalized to

RA(t
′, t) = 1

kBT
XA(t

′, t)
∂CA(t

′, t)
∂t

(2)

where t ′ > t andXA(t ′, t) 6 1 is defined by this equation. HenceT/XA(t ′, t) can be
considered as the temperature for which the usual connection between the time correlation
function and the response holds [10]. The concept of such a temperature has been used in the
glass literature for a long time, in the form of the ‘fictive temperature’, but has remained so far an
ill defined quantity. In contrast to this, the definition given by equation (2) is from a theoretical
and practicalpoint of view much clearer and more useful, and hence more appealing.

Instead of calculating the responseRA(t ′, t) directly, where nowA is the one-particle
density distribution, we proceeded (basically) as follows. In order to compute the associated
response function, we use the following numerical approach. A fictive ‘charge’ε = ±1
is assigned randomly to each particle. An additional term of the form

∑
j εjV (rj ), where

V (r) = V0 cos(k·r) is a small (V0 < kBT )external potential, is then added to the Hamiltonian.
It is then easy to show that,if one averages over several realizations of the random charge
distribution, the time correlation function of the observableAk =

∑
j εj exp(ik · rj (t)) is the

incoherent scattering function. The procedure for generating the response function associated
with Ck is thus straightforward. For a given realization of the random charge distribution, the
system is equilibrated at a high temperature (T = 5.0), and quenched att = 0 to the desired
final temperatureTf . The evolution is followed with the field off for a waiting timetw; then
the field is switched on and the responseAk(tw + τ, tw) is monitored. The same procedure is
repeated for several (seven to ten) realizations of the charge distribution, in order to get the
response function. The quantity that we obtain by this procedure is then an integrated response
functionM(tw + τ, tw), defined as

〈Ak(tw + τ, tw)〉 = V0

∫ tw+τ

tw

R(tw + τ, t) dt = V0M(tw + τ, tw). (3)

This procedure was carried out for three different values of the final temperatureTf ,
namelyTf = 0.4, Tf = 0.3 andTf = 0.1. The amplitude of the external potential was chosen
in such a way that a linear response is obtained at each temperature. ForTf = 0.4,V0 = 0.2,
while for Tf = 0.1,V0 = 0.05. The wavevector wask = 7.25, the location of the main peak
in the structure factor. The runs had a length of 5× 106 time steps, corresponding to 100 000
time units.
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Figure 2. A parametric plot ofkBTM versusC, whereM is the integrated response.Tf = 0.3,
tw = 1000.

It has been argued that fortw andτ large,Xk(tw + τ, tw) becomes a function ofCk only,
i.e.Xk(tw + τ, tw) = x(C(tw + τ, tw)), wherex is a function of one variable. Using this and
equation (2), we obtain

M(C) = 1

kBT

∫ 1

C

x(c) dC (4)

where we used the fact thatCk(tw +τ, tw) = 1 for τ = 0. This result suggests that a parametric
plot ofkBTM versusC is a useful way to look at the data and in figure 2 we show such a plot. For
large values ofC, which corresponds to short times, we see thatM(C) is essentially a straight
line with slope close to−1.0. This means thatx(C) has a slope close to−1, i.e. that the FDT
holds. With decreasingC, corresponding to increasing timeτ , the curve is compatible with
a straight line with slope−m > −1. Therefore we find that in that region−x(C) = m < 1,
and hence that the FDT is violated. Note that a linear dependence ofM onC in the non-FDT
region has also been found for ‘p-spin’ models [1] and this gives support to the hypotheses [11]
that structural glasses are in the same universality class as such models. Finally we mention
that theTf -dependence of the slopem is essentially linear. In particular we find forTf = 0.1,
m = 0.2± 0.1, and forTf = 0.3 andTf = 0.4,m = 0.45 andm = 0.62, respectively.

The effective ‘fluctuation dissipation temperature’ appears therefore to be essentially
independent of the actual temperatureTf , and significantly larger than the glass transition
temperature. This is somewhat reminiscent of the usual ‘fictive temperature’ concept.
Obviously, it would be quite interesting to test the dependence of this ‘fluctuation dissipation
temperature’ on the cooling rate.

Basically, our data support a picture of phase space and of its exploration that is quite
similar to what is found in ‘p-spin’ mean-field models. Below a certain temperature (the
temperatureTc of mode-coupling theory), the system can be in many different and similar
states, with large barriers between them. Within one energy minimum, the system is at
equilibrium, and the usual FDT holds. The process of exploring phase space beyond one
minimum is a non-equilibrium one, and is in some sense performed at a ‘fictive temperature’
higher than the actual temperature.
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